Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation Using Holistic Convolutional Networks

نویسندگان

  • Lucas Fidon
  • Wenqi Li
  • Luis C. García-Peraza-Herrera
  • Jinendra Ekanayake
  • Neil Kitchen
  • Sébastien Ourselin
  • Tom Vercauteren
چکیده

The Dice score is widely used for binary segmentation due to its robustness to class imbalance. Soft generalisations of the Dice score allow it to be used as a loss function for training convolutional neural networks (CNN). Although CNNs trained using mean-class Dice score achieve state-of-the-art results on multi-class segmentation, this loss function does neither take advantage of inter-class relationships nor multi-scale information. We argue that an improved loss function should balance misclassifications to favour predictions that are semantically meaningful. This paper investigates these issues in the context of multi-class brain tumour segmentation. Our contribution is threefold. 1) We propose a semantically-informed generalisation of the Dice score for multi-class segmentation based on the Wasserstein distance on the probabilistic label space. 2) We propose a holistic CNN that embeds spatial information at multiple scales with deep supervision. 3) We show that the joint use of holistic CNNs and generalised Wasserstein Dice score achieves segmentations that are more semantically meaningful for brain tumour segmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

On the influence of Dice loss function in multi-class organ segmentation of abdominal CT using 3D fully convolutional networks

Deep learning-based methods achieved impressive results for the segmentation of medical images. With the development of 3D fully convolutional networks (FCNs), it has become feasible to produce improved results for multi-organ segmentation of 3D computed tomography (CT) images. The results of multi-organ segmentation using deep learning-based methods not only depend on the choice of networks ar...

متن کامل

Multi-class Semantic Segmentation of Skin Lesions via Fully Convolutional Networks

Early detection of skin cancer, particularly melanoma, is crucial to enable advanced treatment. Due to the rapid growth of skin cancers, there is a growing need of computerized analysis for skin lesions. These processes including detection, classification, and segmentation. There are three main types of skin lesions in common that are benign nevi, melanoma, and seborrhoeic keratoses which have ...

متن کامل

Fully Convolutional Architectures for Multi-Class Segmentation in Chest Radiographs

The success of deep convolutional neural networks on image classification and recognition tasks has led to new applications in very diversified contexts, including the field of medical imaging. In this paper we investigate and propose neural network architectures within the context of automated segmentation of anatomical organs in chest radiographs, namely for lungs, clavicles and heart. The pr...

متن کامل

Multi-label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations

We propose a pipeline of two fully convolutional networks for automatic multi-label whole heart segmentation from CT and MRI volumes. At first, a convolutional neural network (CNN) localizes the center of the bounding box around all heart structures, such that the subsequent segmentation CNN can focus on this region. Trained in an end-to-end manner, the segmentation CNN transforms intermediate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017